Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Clin Med ; 13(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38337397

RESUMO

Purpose: The aim of our study is to compare the perioperative, functional, and oncological outcomes of laparoscopic transperitoneal partial nephrectomy (LTPN) and laparoscopic retroperitoneal partial nephrectomy (LRPN) for posterior cT1 renal tumors. Methods: We retrospectively collected data on all patients who consecutively underwent LTPN and LRPN for posterior cT1 renal tumors in three different centers from January 2015 to January 2023. Patients with a single, unilateral, cT1 renal mass, located in the posterior renal surface were included. Patients' data regarding perioperative, functional, and oncological outcomes were collected from medical records and statistically analyzed and compared. Results: A total of 128 patients was obtained, with 53 patients in the LPTN group and 75 patients in the LRPN group. Baseline characteristics were similar. Warm ischemia time (WIT) (18.8 vs. 22.6 min, p = 0.002) and immediate postoperative eGFR drop (-6.1 vs. -13.0 mL/min/1.73 m2, p = 0.047) were significantly lower in the LPTN group. Estimated blood loss (EBL) (100 vs. 150 mL, p = 0.043) was significantly lower in the LRPN group. All other perioperative and functional outcomes and complications were similar between the groups. The positive surgical margin (PSM) rate was lower in the LRPN group, although without statistical significance (7.2% vs. 13.5%, p = 0.258). Surgical success defined by Trifecta (WIT ≤ 25 min, no PSM, and no major postoperative complication) was similar between both approaches. Conclusions: LTPN has significantly shorter WIT and a significantly smaller drop in immediate eGFR when compared to LRPN for posterior renal tumors. On the other hand, LRPN has significantly less EBL than LTPN. LRPN demonstrated fewer PSMs than LTPN, albeit without statistical significance. In terms of overall surgical success, as defined by Trifecta, both approaches achieved similar results.

2.
J Chem Theory Comput ; 20(5): 1796-1801, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38422509

RESUMO

Photoelectron spectroscopy (PES) is a standard experimental method for material characterization, but its interpretation can be hampered by its reliance on standard materials. To facilitate the study of unknown systems, theoretical methods are desirable. Here, we present a real-time equation-of-motion coupled cluster (RT-EOM-CC) approach for valence PES, extending our core-level development. We demonstrate that RT-EOM-CC yields ionization energies and spectral functions in good agreement with experimental and CI-based results, even for some more correlated cases.

3.
J Phys Chem C Nanomater Interfaces ; 128(3): 1165-1176, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38293693

RESUMO

Soft-oxidant-assisted methane coupling has emerged as a promising pathway to upgrade methane from natural gas sources to high-value commodity chemicals, such as ethylene, at selectivities higher than those associated with oxidative (O2) methane coupling (OCM). To date, few studies have reported investigations into the electronic structure and the microscopic physical structure of catalytic active sites present in the binary metal oxide catalyst systems that are known to be effective for this reaction. Correlating the catalyst activity to specific active site structures and electronic properties is an essential aspect of catalyst design. Here, we used X-ray absorption spectroscopy at the Ca K-edge to ascertain the most probable local environment of Ca in the ZnO-supported Ca oxide catalysts. These catalysts are shown here to be active for N2O-assisted methane coupling (N2O-OCM) and have previously been reported to be active for CO2-assisted methane coupling (CO2-OCM). X-ray absorption near edge structure features at multiple Ca loadings are interpreted through simulated spectra derived from ab initio full multiple scattering calculations. These simulations included consideration of CaO structures organized in multiple spatial arrangements-linear, planar, and cubic-with separate analyses of Ca atoms in the surfaces and bulk of the three-dimensional structures. The morphology of the oxide clusters was found to influence the various regions of the X-ray absorption spectrum differently. Experiment and theory show that for low-Ca-loading catalysts (≤1 mol %), which contain sites particularly active for methane coupling, Ca primarily exists in an oxidized state that is consistent with the coordination environment of Ca ions in one- and two-dimensional clusters. In addition to their unique nanoscale structures, the spectra also indicate that these clusters have varying degrees of undercoordinated surface Ca atoms that could further influence their catalytic activities. The local Ca structure was correlated to methane coupling activity from N2O-OCM and previously reported CO2-OCM reactor studies. This study provides a unique perspective on the relationship between the catalyst physical and electronic structure and active sites for soft-oxidant-assisted methane coupling, which can be used to inform future catalyst development.

4.
ACS Appl Mater Interfaces ; 15(40): 47025-47036, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37756387

RESUMO

Electrolyte cations can have significant effects on the kinetics and selectivity of electrocatalytic reactions. We show an atypical mechanism through which electrolyte cations can impact electrocatalyst performance─direct incorporation of the cation into the oxide electrocatalyst lattice. We investigate the transformations of copper electrodes in alkaline electrochemistry through operando X-ray absorption spectroscopy in KOH and Ba(OH)2 electrolytes. In KOH electrolytes, both the near-edge structure and extended fine-structure agree with previous studies; however, the X-ray absorption spectra vary greatly in Ba(OH)2 electrolytes. Through a combination of electronic structure modeling, near-edge simulation, and postreaction characterization, we propose that Ba2+ cations are directly incorporated into the lattice and form an ordered BaCuO2 phase at potentials more oxidizing than 200 mV vs the normal hydrogen electrode (NHE). BaCuO2 formation is followed by further oxidation to a bulk Cu3+-like BaxCuyOz phase at 900 mV vs NHE. Additionally, during reduction in Ba(OH)2 electrolyte, we find both Cu-O bonds and Cu-Ba scattering persist at potentials as low as -400 mV vs NHE. To our knowledge, this is the first evidence for direct oxidative incorporation of an electrolyte cation into the bulk lattice to form a mixed oxide electrode. The oxidative incorporation of electrolyte cations to form mixed oxides could open a new route for the in situ formation of active and selective oxidation electrocatalysts.

5.
Inorg Chem ; 62(36): 14523-14532, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37624729

RESUMO

Sustainable production of rare earth elements (REEs) is critical for technologies needed for climate change mitigation, including wind turbines and electric vehicles. However, separation technologies currently used in REE production have large environmental footprints, necessitating more sustainable strategies. Aqueous, affinity-based separations are examples of such strategies. To make these technologies feasible, it is imperative to connect aqueous ligand structure to ligand selectivity for individual REEs. As a step toward this goal, we analyzed the extended X-ray absorption fine structure (EXAFS) of four lanthanides (La, Ce, Pr, and Nd) complexed by a common REE chelator, ethylenediaminetetraacetic acid (EDTA) to determine the aqueous-phase structure. Reference structures from density functional theory (DFT) were used to help fit the EXAFS spectra. We found that all four Ln-EDTA coordination complexes formed 9-coordinate structures with 6 coordinating atoms from EDTA (4 carboxyl oxygen atoms and 2 nitrogen atoms) and 3 oxygen atoms from water molecules. All EXAFS fits were of high quality (R-factor < 0.02) and showed decreasing average first-shell coordination distance across the series (2.62-2.57 Å from La-Nd), in agreement with DFT (2.65-2.56 Å from La-Nd). The insights determined herein will be useful in the development of ligands for sustainable rare earth elements (REE) separation technologies.

6.
J Chem Theory Comput ; 19(20): 7077-7096, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37458314

RESUMO

This paper summarizes developments in the NWChem computational chemistry suite since the last major release (NWChem 7.0.0). Specifically, we focus on functionality, along with input blocks, that is accessible in the current stable release (NWChem 7.2.0) and in the "master" development branch, interfaces to quantum computing simulators, interfaces to external libraries, the NWChem github repository, and containerization of NWChem executable images. Some ongoing developments that will be available in the near future are also discussed.

7.
J Chem Theory Comput ; 19(8): 2248-2257, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37096369

RESUMO

We report the implementation of the real-time equation-of-motion coupled-cluster (RT-EOM-CC) cumulant Green's function method [ J. Chem. Phys. 2020, 152, 174113] within the Tensor Algebra for Many-body Methods (TAMM) infrastructure. TAMM is a massively parallel heterogeneous tensor library designed for utilizing forthcoming exascale computing resources. The two-body electron repulsion matrix elements are Cholesky-decomposed, and we imposed spin-explicit forms of the various operators when evaluating the tensor contractions. Unlike our previous real algebra Tensor Contraction Engine (TCE) implementation, the TAMM implementation supports fully complex algebra. The RT-EOM-CC singles (S) and doubles (D) time-dependent amplitudes are propagated using a first-order Adams-Moulton method. This new implementation shows excellent scalability tested up to 500 GPUs using the Zn-porphyrin molecule with 655 basis functions, with parallel efficiencies above 90% up to 400 GPUs. The TAMM RT-EOM-CCSD was used to study core photoemission spectra in the formaldehyde and ethyl trifluoroacetate (ESCA) molecules. Simulations of the latter involve as many as 71 occupied and 649 virtual orbitals. The relative quasiparticle ionization energies and overall spectral functions agree well with available experimental results.

8.
J Chem Phys ; 157(4): 044101, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35922363

RESUMO

Newly developed coupled-cluster (CC) methods enable simulations of ionization potentials and spectral functions of molecular systems in a wide range of energy scales ranging from core-binding to valence. This paper discusses the results obtained with the real-time equation-of-motion CC cumulant (RT-EOM-CC) approach and CC Green's function (CCGF) approaches in applications to the water and water dimer molecules. We compare the ionization potentials obtained with these methods for the valence region with the results obtained with the coupled-cluster with singles, doubles, and perturbative triples formulation as a difference of energies for N and N - 1 electron systems. All methods show good agreement with each other. They also agree well with the experiment with errors usually below 0.1 eV for the ionization potentials. We also analyze unique features of the spectral functions, associated with the position of satellite peaks, obtained with the RT-EOM-CC and CCGF methods employing single and double excitations, as a function of the monomer OH bond length and the proton transfer coordinate in the dimer. Finally, we analyze the impact of the basis set effects on the quality of calculated ionization potentials and find that the basis set effects are less pronounced for the augmented-type sets.

9.
Phys Chem Chem Phys ; 24(22): 13461-13473, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616020

RESUMO

X-Ray and related spectroscopies are powerful probes of atomic, vibrational, and electronic structure. In order to unlock the full potential of such experimental techniques, accurate and efficient theoretical and computational approaches are essential. Here we review the status of a variety of first-principles and nearly first principles techniques for X-ray spectroscopies such as X-ray absorption, X-ray emission, and X-ray photoemission, with a focus on Green's function based methods. In particular, we describe the current state of multiple scattering Green's function techniques available in the FEFF10 code and cumulant Green's function techniques for including the effects of many-body electronic excitations. Illustrative examples are shown for a variety of materials and compared with other theoretical and experimental results.

10.
J Phys Chem Lett ; 13(17): 3896-3903, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35471032

RESUMO

Atomically dispersed metals on metal oxide supports are a rapidly growing class of catalysts. Developing an understanding of where and how the metals are bonded to the supports is challenging because support surfaces are heterogeneous, and most reports lack a detailed consideration of these points. Herein, we report two atomically dispersed CO oxidation catalysts having markedly different metal-support interactions: platinum in the first layer of crystalline MgO powder and platinum in the second layer of this support. Structural models have been determined on the basis of data and computations, including those determined by extended X-ray absorption fine structure and X-ray absorption near edge structure spectroscopies, infrared spectroscopy of adsorbed CO, and scanning transmission electron microscopy. The data demonstrate the transformation of surface to subsurface platinum as the temperature of sample calcination increased. Catalyst performance data demonstrate the lower activity but greater stability of the subsurface platinum than of the surface platinum.

11.
Can Urol Assoc J ; 16(5): E267-E273, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34942080

RESUMO

INTRODUCTION: We aimed to compare the rate of postoperative infection and drug-resistant organism (DRO) before and during the COVID-19 pandemic in urology departments. METHODS: A retrospective cohort study was carried out. Data from all elective surgical procedures carried out in two urology departments between April and June 2018 and the homologous period in 2020 were collected. Main outcomes were the number of postoperative infections during the pandemic and the number of DROs. Sample size was calculated based on a 50% relative reduction of infections during the pandemic. Variables were compared by Chi-squared test, and multivariable logistic regression was used to estimate predictors. RESULTS: A total of 698 patients undergoing elective surgery were included. The postoperative infection rate during the pre-pandemic period was of 14.1% compared to 12.1% during the pandemic (p=0.494). DROs were lower during the pandemic (92.3% vs. 52.4%, p=0.002). The pandemic period was the main predictor for reduced multidrug-resistant isolates, with an odds ratio of 0.10 (p=0.010, 95% confidence interval 0.016-0.57). CONCLUSIONS: Postoperative infection rates were not significantly reduced during the COVID-19 pandemic, despite the adoption of enhanced infection preventive measures. There was, however, a decrease in the rate of DROs during this period, suggesting a secondary benefit to enhanced infection prevention practices adopted during the COVID-19 era.

12.
J Am Chem Soc ; 143(48): 20144-20156, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34806881

RESUMO

Atomically dispersed supported metal catalysts offer new properties and the benefits of maximized metal accessibility and utilization. The characterization of these materials, however, remains challenging. Using atomically dispersed platinum supported on crystalline MgO (chosen for its well-defined bonding sites) as a prototypical example, we demonstrate how systematic density functional theory calculations for assessing all the potentially stable platinum sites, combined with automated analysis of extended X-ray absorption fine structure (EXAFS) spectra, leads to unbiased identification of isolated, surface-enveloped platinum cations as the catalytic species for CO oxidation. The catalyst has been characterized by atomic-resolution imaging and EXAFS and high-energy resolution fluorescence detection X-ray absorption near edge spectroscopy. The proposed platinum sites are in agreement with experiment. This theory-guided workflow leads to rigorously determined structural models and provides a more detailed picture of the structure of the catalytically active site than what is currently possible with conventional EXAFS analyses. As this approach is efficient and agnostic to the metal, support, and catalytic reaction, we posit that it will be of broad interest to the materials characterization and catalysis communities.

13.
Int J Surg Pathol ; 29(6): 690-692, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33455515

RESUMO

Most malignant tumors of the penis are squamous cell carcinomas (SCC), being divided in 2 groups, one human papillomavirus (HPV)-related and another non-HPV-related, with lymphoepithelioma-like carcinoma (LELC) being one of the rarest HPV-related SCC. In this article, we report a case of a 50-year-old man who presented testicular swelling and pain for the past 3 months. A penile mass was identified, and the patient was submitted to a total penectomy. The penectomy specimen showed an ulcerated lesion at the glans reaching the cavernous bodies. Microscopic examination showed undifferentiated epithelial cells with syncytial growth pattern mix with a dense lymphoplasmacytic infiltrate, consistent with LELC. The tumor cells expressed p16 and all 3 different clones of PDL1 (22C3, SP263, and SP142). The patient is alive and well with a follow-up of 3 months. To our knowledge, this is the third LELC of the penis reported in literature and the first case reported with PDL1 expression.


Assuntos
Carcinoma/diagnóstico , Infecções por Papillomavirus/diagnóstico , Neoplasias Penianas/diagnóstico , Biomarcadores Tumorais/análise , Biópsia , Carcinoma/patologia , Carcinoma/virologia , Inibidor p16 de Quinase Dependente de Ciclina/análise , Humanos , Masculino , Pessoa de Meia-Idade , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Neoplasias Penianas/patologia , Neoplasias Penianas/virologia , Pênis/patologia , Pênis/virologia
14.
J Phys Chem B ; 124(7): 1253-1258, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31977217

RESUMO

Understanding the factors that control solubility and speciation of metal ions in molten salts is key for their successful use in molten salt reactors and electrorefining. Here, we employ X-ray and optical absorption spectroscopies and molecular dynamics simulations to investigate the coordination environment of Ni(II) in molten ZnCl2, where it is poorly soluble, and contrast it with highly soluble Co(II) over a wide temperature range. In solid NiCl2, the Ni ion is octahedrally coordinated, whereas the ZnCl2 host matrix favors tetrahedral coordination. Our experimental and computational results show that the coordination environment of Ni(II) in ZnCl2 is disordered among tetra- and pentacoordinate states. In contrast, the local structure of dissolved Co(II) is tetrahedral and commensurate with the ZnCl2 host's structure. The heterogeneity and concomitant large bond length disorder in the Ni case constitute a plausible explanation for its lower solubility in molten ZnCl2.

15.
Cent European J Urol ; 72(3): 276-279, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31720030

RESUMO

INTRODUCTION: Epidemiologic studies demonstrate that obesity and diabetes increase the prevalence of urinary lithiasis. Most of these studies did not stratify the chemical composition of calculi and the physiological mechanisms responsible for this increased risk are not well understood. This study aims to investigate the relation between the metabolic syndrome and the composition of the urinary calculi. MATERIAL AND METHODS: Observational and retrospective study of all urinary calculi analysis performed at the Centro Hospitalar do Tâmega e Sousa, Portugal - from January 2009 to September 2015. Calculi were analyzed by infrared spectroscopy. RESULTS: 302 analyses of urinary calculi were identified. Metabolic syndrome was diagnosed in 20.5% of patients. A total of 7 different mineral compounds were identified: 51.6% (N = 156) contained calcium oxalate, 41% (N = 124) calcium phosphate, 37.7% (N = 114) uric acid, 22.1% (N = 67) ammonium urate, 9.6% (N = 29) ammonium magnesium phosphate, 6.3% (N = 19) sodium urate and 1.3% (N = 4) contained cystine. Patients with metabolic syndrome presented a higher proportion of uric acid calculi (66.1% vs. 0%, p <0.001) and ammonium urate calculi (38.7% vs. 17%, p = 0.001). Patients without metabolic syndrome had a higher proportion of calcium oxalate calculi (58.8% vs. 24.2%, p <0.001) and calcium phosphate (46.7% vs. 19.4%, p <0.001). CONCLUSIONS: There is a statistically significant relation between metabolic syndrome and uric acid and ammonium urate calculi. Metabolic syndrome may be considered risk factor for this calculi and the diagnosis and treatment of this syndrome must be considered for urolithiasis prevention. Further studies are needed to better the understanding of physiological mechanisms underlying this relationship to improve our strategy of prevention of urinary lithiasis.

16.
J Am Chem Soc ; 141(50): 19655-19668, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31724857

RESUMO

Rh-based catalysts have shown promise for the direct conversion of syngas to higher oxygenates. Although improvements in higher oxygenate yield have been achieved by combining Rh with metal oxide promoters, details of the structure of the promoted catalyst and the role of the promoter in enhancing catalytic performance are not well understood. In this work, we show that MoO3-promoted Rh nanoparticles form a novel catalyst structure in which Mo substitutes into the Rh surface, leading to both a 66-fold increase in turnover frequency and an enhancement in oxygenate yield. By applying a combination of atomically controlled synthesis, in situ characterization, and theoretical calculations, we gain an understanding of the promoter-Rh interactions that govern catalytic performance for MoO3-promoted Rh. We use atomic layer deposition to modify Rh nanoparticles with monolayer-precise amounts of MoO3, with a high degree of control over the structure of the catalyst. Through in situ X-ray absorption spectroscopy, we find that the atomic structure of the catalytic surface under reaction conditions consists of Mo-OH species substituted into the surface of the Rh nanoparticles. Using density functional theory calculations, we identify two roles of MoO3: first, the presence of Mo-OH in the catalyst surface enhances CO dissociation and also stabilizes a methanol synthesis pathway not present in the unpromoted catalyst; and second, hydrogen spillover from Mo-OH sites to adsorbed species on the Rh surface enhances hydrogenation rates of reaction intermediates.

17.
J Phys Chem A ; 123(35): 7619-7636, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31386367

RESUMO

We demonstrate that the possibility of monitoring relative photoionization cross sections over a large photon energy range allows us to study and disentangle shake processes and intramolecular inelastic scattering effects. In this gas-phase study, relative intensities of the carbon 1s photoelectron lines from chemically inequivalent carbon atoms in the same molecule have been measured as a function of the incident photon energy in the range of 300-6000 eV. We present relative cross sections for the chemically shifted carbon 1s lines in the photoelectron spectra of ethyl trifluoroacetate (the "ESCA" molecule). The results are compared with those of methyl trifluoroacetate and S-ethyl trifluorothioacetate as well as a series of chloro-substituted ethanes and 2-butyne. In the soft X-ray energy range, the cross sections show an extended X-ray absorption fine structure type of wiggles, as was previously observed for a series of chloroethanes. The oscillations are damped in the hard X-ray energy range, but deviations of cross-section ratios from stoichiometry persist, even at high energies. The current findings are supported by theoretical calculations based on a multiple scattering model. The use of soft and tender X-rays provides a more complete picture of the dominant processes accompanying photoionization. Such processes reduce the main photoelectron line intensities by 20-60%. Using both energy ranges enabled us to discern the process of intramolecular inelastic scattering of the outgoing electron, whose significance is otherwise difficult to assess for isolated molecules. This effect relates to the notion of the inelastic mean free path commonly used in photoemission studies of clusters and condensed matter.

18.
Front Chem ; 6: 356, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30191149

RESUMO

Extended x-ray absorption fine structure (EXAFS) is well-suited for investigations of structure and disorder of complex materials. Recently, experimental measurements and analysis of EXAFS have been carried out to elucidate the mechanisms responsible for the negative thermal expansion (NTE) in zirconium tungstate (ZrW2O8). In contrast to previous work suggesting that transverse O-displacements are largely responsible, the EXAFS analysis suggested that correlated rotations and translations of octahedra and tetrahedra within the structure are a major source. In an effort to resolve this controversy, we have carried out ab initio calculations of the structure, lattice vibrations, and EXAFS of ZrW2O8 based on real-space multiple-scattering calculations using the FEFF9 code and auxiliary calculations of structure and Debye-Waller factors. We find that the theoretical simulations are consistent with observed EXAFS, and show that both of the above mechanisms contribute to the dynamical structure of ZrW2O8.

19.
Front Chem ; 6: 296, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30105223

RESUMO

We present a study of the origin of the negative thermal expansion (NTE) on ZrW2O8 by combining an efficient approach for computing the dynamical matrix with the Lanczos algorithm for generating the phonon density of states in the quasi-harmonic approximation. The simulations show that the NTE arises primarily from the motion of the O-sublattice, and in particular, from the transverse motion of the O atoms in the W-O and W-O-Zr bonds. In the low frequency range these combine to keep the WO4 tetrahedra rigid and induce internal distortions in the ZrO6 octahedra. The force constants associated with these distortions become stronger with expansion, resulting in negative Grüneisen parameters and NTE from the low frequency modes that dominate the positive contributions from the high frequency modes. This leads us to propose an anharmonic, two-frequency Einstein model that quantitatively captures the NTE behavior.

20.
J Phys Chem Lett ; 8(14): 3284-3288, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28669195

RESUMO

Supported Pt nanocatalysts generally exhibit anomalous behavior, including negative thermal expansion and large structural disorder. Finite temperature DFT/MD simulations reproduce these properties, showing that they are largely explained by a combination of thermal vibrations and low-frequency disorder. We show here that a full interpretation is more complex and that the DFT/MD mean-square relative displacements (MSRD) can be further separated into vibrational disorder, "dynamic structural disorder" (DSD), and long-time equilibrium fluctuations of the structure dubbed "anomalous structural disorder" (ASD). We find that the vibrational and DSD components behave normally, increasing linearly with temperature while the ASD decreases, reflecting the evolution of mean nanoparticle geometry. As a consequence the usual procedure of fitting the MSRD to normal vibrations plus temperature-independent static disorder results in unphysical bond strengths and Grüneisen parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...